Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466168

RESUMEN

The secreted ApoE protein is a major regulator of lipid transport between brain cells. In this issue, Windham et al. (https://doi.org/10.1083/jcb.202305003) uncover a novel intracellular role for ApoE at the lipid droplet surface, where it regulates lipid droplet size and composition.


Asunto(s)
Apolipoproteínas E , Gotas Lipídicas , Apolipoproteínas E/metabolismo , Transporte Biológico , Gotas Lipídicas/metabolismo , Humanos , Animales
2.
Mol Oncol ; 17(7): 1192-1211, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37195379

RESUMEN

Faithful and timely repair of DNA double-strand breaks (DSBs) is fundamental for the maintenance of genomic integrity. Here, we demonstrate that the meiotic recombination co-factor MND1 facilitates the repair of DSBs in somatic cells. We show that MND1 localizes to DSBs, where it stimulates DNA repair through homologous recombination (HR). Importantly, MND1 is not involved in the response to replication-associated DSBs, implying that it is dispensable for HR-mediated repair of one-ended DSBs. Instead, we find that MND1 specifically plays a role in the response to two-ended DSBs that are induced by irradiation (IR) or various chemotherapeutic drugs. Surprisingly, we find that MND1 is specifically active in G2 phase, whereas it only marginally affects repair during S phase. MND1 localization to DSBs is dependent on resection of the DNA ends and seemingly occurs through direct binding of MND1 to RAD51-coated ssDNA. Importantly, the lack of MND1-driven HR repair directly potentiates the toxicity of IR-induced damage, which could open new possibilities for therapeutic intervention, specifically in HR-proficient tumors.


Asunto(s)
Reparación del ADN , Recombinación Homóloga , Humanos , Reparación del ADN/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Fase S , Proteínas de Ciclo Celular/metabolismo
3.
J Neurosci ; 43(3): 347-358, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36517239

RESUMEN

The presynaptic proteins MUNC18-1, syntaxin-1, and SNAP25 drive SNARE-mediated synaptic vesicle fusion and are also required for neuronal viability. Their absence triggers rapid, cell-autonomous, neuron-specific degeneration, unrelated to synaptic vesicle deficits. The underlying cell death pathways remain poorly understood. Here, we show that hippocampi of munc18-1 null mice (unknown sex) express apoptosis hallmarks cleaved caspase 3 (CC-3) and phosphorylated p53, and have condensed nuclei. However, side-by-side in vitro comparison with classical apoptosis induced by camptothecin uncovered striking differences to syntaxin-1 and MUNC18-1 depleted neurons. First, live-cell imaging revealed consecutive neurite retraction hours before cell death in MUNC18-1 or syntaxin-1 depleted neurons, whereas all neurites retracted at once, directly before cell death in classical apoptosis. Second, CC-3 activation was observed only after loss of all neurites and cellular breakdown, whereas CC-3 is activated before any neurite loss in classical apoptosis. Third, a pan-caspase inhibitor and a p53 inhibitor both arrested classical apoptosis, as expected, but not cell death in MUNC18-1 or syntaxin-1 depleted neurons. Neuron-specific cell death, consecutive neurite retraction, and late CC-3 activation were conserved in syntaxin-1 depleted human neurons. Finally, no indications were observed for involvement of other established cell death pathways, including necroptosis, Wallerian degeneration, autophagic cell death, and pyroptosis. Together, these data show that depletion of presynaptic proteins MUNC18-1 or syntaxin-1 triggers an atypical, staged cell death pathway characterized by consecutive neurite retraction, ultimately leading to, but not driven by, apoptosis.SIGNIFICANCE STATEMENT Neuronal cell death can occur via a multitude of pathways and plays an important role in the developing nervous system as well as neurodegenerative diseases. One poorly understood pathway to neuronal cell death takes place on depletion of presynaptic SNARE proteins syntaxin-1, SNAP25, or MUNC18-1. The current study demonstrates that MUNC18-1 or syntaxin-1 depleted neurons show a new, atypical, staged cell death that does not resemble any of the established cell death pathways in neurons. Cell death on MUNC18-1 or syntaxin-1 depletion is characterized by consecutive neurite retraction, ultimately involving, but not driven by, classical apoptosis.


Asunto(s)
Proteínas SNARE , Proteína p53 Supresora de Tumor , Ratones , Animales , Humanos , Sintaxina 1/genética , Proteínas SNARE/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Muerte Celular , Ratones Noqueados , Unión Proteica
4.
Front Aging Neurosci ; 13: 690372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248607

RESUMEN

While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.

5.
Cancer Res ; 81(16): 4319-4331, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34145035

RESUMEN

Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.


Asunto(s)
Autoantígenos/metabolismo , Neoplasias de la Mama/metabolismo , Carcinogénesis , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Femenino , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitosis , Mutación , Proteoma , Recombinación Genética , Transducción de Señal
6.
Cell Rep ; 34(4): 108675, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503422

RESUMEN

DNA replication is challenged by numerous exogenous and endogenous factors that can interfere with the progression of replication forks. Substantial accumulation of single-stranded DNA during DNA replication activates the DNA replication stress checkpoint response that slows progression from S/G2 to M phase to protect genomic integrity. Whether and how mild replication stress restricts proliferation remains controversial. Here, we identify a cell cycle exit mechanism that prevents S/G2 phase arrested cells from undergoing mitosis after exposure to mild replication stress through premature activation of the anaphase promoting complex/cyclosome (APC/CCDH1). We find that replication stress causes a gradual decrease of the levels of the APC/CCDH1 inhibitor EMI1/FBXO5 through Forkhead box O (FOXO)-mediated inhibition of its transcription factor E2F1. By doing so, FOXOs limit the time during which the replication stress checkpoint is reversible and thereby play an important role in maintaining genomic stability.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN/genética , Replicación del ADN/genética , Inestabilidad Genómica/genética , Proliferación Celular , Humanos
7.
J Am Chem Soc ; 140(41): 13136-13141, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30284823

RESUMEN

Selectivity remains a major challenge in anticancer therapy, which potentially can be overcome by local activation of a cytotoxic drug. Such triggered activation can be obtained through modification of a drug with a photoremovable protecting group (PPG), and subsequent irradiation in the chosen place and time. Herein, the design, synthesis and biological evaluation is described of a photoactivatable MDM2 inhibitor, PPG-idasanutlin, which exerts no functional effect on cellular outgrowth, but allows for the selective, noninvasive activation of antitumor properties upon irradiation visible light, demonstrating activation with micrometer, single cell precision. The generality of this method has been demonstrated by growth inhibition of multiple cancer cell lines showing p53 stabilization and subsequent growth inhibition effects upon irradiation. Light activation to regulate protein-protein interactions between MDM2 and p53 offers exciting opportunities to control a multitude of biological processes and has the potential to circumvent common selectivity issues in antitumor drug development.


Asunto(s)
Cumarinas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirrolidinas/farmacología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , para-Aminobenzoatos/farmacología , Animales , Línea Celular Tumoral , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/efectos de la radiación , Humanos , Luz , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/química , Pirrolidinas/síntesis química , Pirrolidinas/química , Pirrolidinas/efectos de la radiación , Factores de Transcripción/química , Proteínas de Xenopus/química , Xenopus laevis , para-Aminobenzoatos/síntesis química , para-Aminobenzoatos/química , para-Aminobenzoatos/efectos de la radiación
8.
Nucleic Acids Res ; 46(19): 10132-10144, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30184135

RESUMEN

DNA damaging agents cause a variety of lesions, of which DNA double-strand breaks (DSBs) are the most genotoxic. Unbiased approaches aimed at investigating the relationship between the number of DSBs and outcome of the DNA damage response have been challenging due to the random nature in which damage is induced by classical DNA damaging agents. Here, we describe a CRISPR/Cas9-based system that permits us to efficiently introduce DSBs at defined sites in the genome. Using this system, we show that a guide RNA targeting only a single site in the human genome can trigger a checkpoint response that is potent enough to delay cell cycle progression. Abrogation of this checkpoint leads to DNA breaks in mitosis which gives rise to aneuploid progeny.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Aneuploidia , Sistemas CRISPR-Cas , Línea Celular , Daño del ADN , Genoma Humano/genética , Humanos , Mitosis/genética
9.
Nat Commun ; 7: 12618, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561326

RESUMEN

Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.


Asunto(s)
Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Inestabilidad Genómica/genética , Mitosis/genética , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromosomas Humanos/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Imagen de Lapso de Tiempo
10.
Mol Cell ; 55(1): 59-72, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24910099

RESUMEN

DNA damage can result in a transient cell-cycle arrest or lead to permanent cell-cycle withdrawal. Here we show that the decision to irreversibly withdraw from the cell cycle is made within a few hours following damage in G2 cells. This permanent arrest is dependent on induction of p53 and p21, resulting in the nuclear retention of Cyclin B1. This rapid response is followed by the activation of the APC/C(Cdh1) (the anaphase-promoting complex/cyclosome and its coactivator Cdh1) several hours later. Inhibition of APC/C(Cdh1) activity fails to prevent cell-cycle withdrawal, whereas preventing nuclear retention of Cyclin B1 does allow cells to remain in cycle. Importantly, transient induction of p53 in G2 cells is sufficient to induce senescence. Taken together, these results indicate that a rapid and transient pulse of p53 in G2 can drive nuclear retention of Cyclin B1 as the first irreversible step in the onset of senescence.


Asunto(s)
Senescencia Celular/genética , Daño del ADN , Fase G2 , Proteína p53 Supresora de Tumor/fisiología , Transporte Activo de Núcleo Celular , Puntos de Control del Ciclo Celular , Diferenciación Celular , Ciclina B1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...